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Abstract-Unsteady cooling problem with conduction and radiation is examined here for a finite cylindrical 
medium that is exposed to the rarefied cold environment. To solve the energy conservation equation and 
radiative transfer equation, the finite difference technique with the Crank-Nicolson scheme and the discrete 
ordinates method were chosen respectively. A parametric study was performed to find the effects of optical 
diameter, conduction-to-radiation parameter and scattering albedo. Cooling characteristics were discussed 
through the mean temperature and emittance of the medium. It has been greatly affected by those 

parameters. 

1. INTRODUCTION 

IN THIS study a transient radiative cooling of finite 
cylindrical semitransparent medium, when sim- 
ultaneously combined with conduction, is examined 
under rarefied cold environment. Its application lies 
in a number of engineering applications such as the 
cooling of high-temperature porous ceramic insu- 
lating media, ceramic coatings at high temperature, 
formation of crystals in an outer space environment 
and waste heat dissipation technique for an orbiting 
space power plant. Resulting from its engineering 
importance, many papers have been reported for 
different geometries. One-dimensional transient 
cooling for slab [l-9], cylindrical [ 10,l l] and spherical 
[ 12, 131 configurations respectively was explored 
under various conditions. Two-dimensional rec- 
tangular medium has been also investigated by Siegel 
[14, 151, but only a radiative cooling was taken into 
consideration. 

Recently, Siegel [5] proposed that there exists a fully 
developed state for the radiative cooling case alone. 
When the medium initially at uniform high tem- 
perature is exposed to a rarefied cold and black sur- 
roundings, the temperature near the boundary rapidly 
decreases. Therefore, the medium temperature loses 
its uniformity and a steep temperature gradient is 
established in the boundary layer. Concurrently, the 
emittance of the medium is expeditiously dropping 
from its initial value. But as the transient cooling 

proceeds further, the temperature distribution is 
steadily developing to a certain profile that is there- 

after maintained. When this similar temperature pro- 

file is established, the emittance of the radiating 
medium is held constant throughout the remaining 
cooling period. Siegel called this constant emittance 
state the fully developing condition. Due to the simi- 
larity of the temperature profile, the time and space 
wise coordinates can be decoupled from the other. 
Using this feature, Siegel introduced the separation of 
variable technique to efficiently obtain good results 
[6, 11, 141. In the case that the conduction is involved 
in redistributing the thermal energy, the fully develop- 
ing temperature profile cannot be resolved, since the 
conduction continuously makes the internal tempera- 
ture distribution uniform. Therefore the emittance of 
the medium decreases in the cooling period and then 
it is recovered to its initial value corresponding to the 
new uniform temperature [9]. 

Unsteady multidimensional thermal problems, 
including radiation, have been numerically studied 
by a few researchers because of their mathematical 
difficulties and requirement of large computational 
storage and time. A latest development of computer 
performance makes their numerical analysis practical 
and efficient. Simultaneously, many competent 
methods were devised and improved to solve the radi- 
ative transfer equation. Among others the discrete 
ordinates method was developed by Carlson and 
Lathrop [ 161 for application to the neutron transport 
equations. Since then, it was applied to various engin- 
eering problems [ 17-201. The discrete ordinates 
method, conceptually, belongs to a family of flux 

models, but corrects lack of accuracy and efficiency 
of the conventional flux models, which were verified 
by others [18-191. 
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NOMENCLATURE 

A. I;,, dimensionless area and volume “‘01 &,> mean emittance defined in equation (6) 
computational cell depicted in Fig. I I). (i, angular coordinates depicted in Fig. 1 

Ar aspect ratio, D/L K absorbing coefficient 

(‘I’ specific heat i thermal conductivity 
D. L diameter and length ’ /L. 9% 5 directional cosines defined in Fig. 1 
I dimensionless intensity. f/n*gf, P density 
II refractive index g StefanBoltzmann constant 
!V conduction-to-radiation parameter. c,, scattering coefficient 

i/I:4n’a7:’ 71) optical diameter. PO 

Y dimensionless heat flux. Lj/fr2a?,’ (‘),I scattering albedo. c,,‘/i 
I dimensionless time, 4[{11’af,‘i/pc,, 0 solid angle. 
T dimensionless temperature, f/p8 

T,,, dimensionless mean temperature defined Subscripts and superscripts 
in equation (5) C conduction 

I’. : dimensionless radial and axial e, w. n, s faces of the computation cell 
coordinates. t/D, 5/L. P centre of computation cell 

R radiation 
Greek symbols T total 

P extinction coefficient, K+ fro dimensional quantity. 

In this paper. a transient cooling of a finite cyl- JT 
indrical semitransparent medium is numerically if = t;) 
analyzed in axisymmetry, when it is brought up to the 

rarefied black-body environment. The thermal energy 
inside the medium is transmitted by both radiation 
and conduction. The effect of thermal properties 
including optical diameter. conduction-to-radiation 
parameter and scattering albedo on the transient 
cooling characteristics is examined. The new aspect to 
this study is as follows ; the inclusion of axisymmetric 
treatment of radiation in the cylindrical medium; 
inclusion of conduction inside the medium. Since the 
conduction is taken into consideration, there would 
be no similarity in the long-time solution as mentioned 

above. 

2. ANALYSIS 

Consider a finite cylindrical semitransparent med- 

ium of diameter D and length L. It is initially at a 
uniform temperature ?, and instantaneously placed 
in a rarefied black surroundings at a very low tem- 
perature. The medium emits the energy by radiation 
at the boundary and the thermal energy is internally 
redistributed by radiation and conduction. Because 
only the radiative loss to the surroundings is assumed, 
there would be no conductive or convective energy 
transfer to the surroundings. The incoming radiation 
from the surroundings is neglected due to its very low 
temperature. 

By defining the dimensionless variables listed in 
the nomenclature, the transient energy conservation 
equaLion can be expressed as follows : 

where the first two terms on the right hand side indi- 
cate two-dimensional conduction and the last two 
terms the divergence of radiative heat flux. 

Energy can be conducted into a surface layer from 
the inside, but this energy cannot be radiated exactly 
from the surface layer to the outside, for the boundary 
of the medium joining the rarefied surroundings is 
externally insulated with regard to the conduction 
portion of the energy transfer. The surface layer is 
semitransparent so that the energy from within the 
region can pass through boundaries only by radiation. 
Therefore, the boundary conditions at the left, right 
and circumferential surfaces for the equation (1) are 
zero temperature gradient. The symmetric condition 
is imposed at the axisymmetric axis. Since all the tem- 
perature is non-dimensionalized with respect to its 
initial value, the initial condition of temperature is 

unity. 
By balancing the radiative energy emitted, absorbed 

and scattered, the dimensionless radiative transfer 
equation can be given as 

cD(R’ -+ Q)r dR’ (2) 

where @ is the scattering phase function. In the present 
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analysis CD is set to 1 which corresponds to the iso- 
tropic scattering. It is assumed that there is no in- 
coming radiative intensity from outside the boundary. 

2.2. Supplementary equations 
The directional total heat flux in each radial or axial 

direction consists of conductive and radiative heat 
fluxes as follows 

As previously mentioned, there is only radiative 
heat loss toward the outside environment through the 
boundary. The instantaneous total heat loss per unit 
area can be integrated to the following form : 

112 

(lqZRlz=~+lqiRIz=lPdr 

+ 0’ IsPI dz . (4) 
s 1 

The instantaneous mean temperature across the 
medium can be defined as 

I. D/2 

PC, ss f27ci di d5 

T,,, = ’ ‘_ 
I 

ss 

112 

pc,TiinD2L/4 
8 

= 0 0 
Tr dr dz 

(5) 

which implies the ratio of the remaining energy at any 
time to the initial energy. 

By making use of this mean temperature, the tran- 
sient mean emittance can be formulated as two types, 

4lOSS 
E, = 4 

T, 

E, = - (6) 

Whereas the former results from considering the heat 
loss at the boundaries, the latter is defined by cal- 
culating the rate of waste of energy in the medium. 
By nature, they should be identical. 

3. NUMERICAL METHOD 

To solve the energy conservation equation the finite 
difference technique with the Crank-Nicolson scheme 
has been chos n, which is unconditionally stable and 
has second order accuracy. 

The discrete ordinates method considers the radi- 
ative transfer equation only in a finite number of 
directions spanning a full range of the total solid angle 
47~. The resulting discrete equation with double 
subscripts mn, which can be obtained by the direct- 

differencing technique for angular derivative, can be 
written as 

r 

azm- 
+ Art,, aZ 1 1 -coo 

+I”“’ = ____ 7-4 7l 
+ 2 F !f a)m~n~_m”wm~n~zm’“’ ; 

m’ n’ 

m=l,..., m,,n=l,..., nM (7) 

where the coefficients tl,+ ,,Z for the angular deriva- 
tive term are determined from the following recur- 
rence formula : 

with the initial value of LX, ,,2 = 0. 
As long as the symmetry and invariance properties 

of the physical system are to be preserved, the choice 
of ordinate directions Q,, and quadratic weighting 

factor w,, is arbitrary. However, a complete sym- 
metric quadrature is preferred because of its generality 
[16]. In general there are N(N+2) directions for 
N = 2, 4, 6,. . This N is the accompanying letter 

of so called S-N discrete ordinate scheme. For the 
present study 24 directions have been chosen and thus 
it is called S-4 approximation. But there are only 12 
independent directions due to its axisymmetry. Pre- 
liminary evaluations revealed that the S-4 approxi- 
mation is quite adequate in present analysis, for no 

measurable gain in accuracy was obtained by higher 
order approximations such as S-6 and S-8. Hence 
only S-4 approximation is used here. The ordinate 

directions and quadratic weighting factors are given 

in Table 1 according to Fiveland [ 181. 
By integrating equation (7) over the control volume 

Table 1. The ordinate directions and weighting factors for 
the S-4 approximation 

m II !-&In vmn 

1 1 -0.2959 0.2959 
12 0.2959 0.2959 

2 1 -0.9082 0.2959 
2 2 -0.2959 0.9082 
2 3 0.2959 0.9082 
2 4 0.9082 0.2959 

3 1 -0.9082 0.2959 
3 2 -0.2959 0.9082 
3 3 0.2959 0.9082 
3 4 0.9082 0.2959 

4 I -0.2959 0.2959 
4 2 0.2959 0.2959 

-0.9082 
-0.9082 

-0.2959 
-0.2959 
-0.2959 
-0.2959 

0.2959 
0.2959 
0.2959 
0.2959 

0.9082 
0.9082 



To relate the Facial intensities of the control volume 
and the edge intensities of the angular range to the 
cell centre intensity, the l.o~~awing linear equation is 
introduced : 

[y’ _,fp$ + (, _f’,y = 

-+(I +,:’ 

;:“‘.’ I ? 

Jllli 
P ‘:: liS<j’< I. (II) 

where subscripi i represents the spaliat direction i” or 
2. The subscripts s and c denote the starting face from 
which a bundle of in~ensit~~ originally comes, and the 
ending face at which the intensity arrives. respectively. 
For positive set of (/A,,*,~ . &,,), the subscripts s and e 
represent (s, n) along r-direction and (w. cf along z- 
direction ~ndividnal~y. ~ear~dng~~g equation (9) for 
f;t,,, and su~s~itu~in~ equation (1 I) into the intensities 
for ending face and direction of MR + 1 /Z results in 

(12) 

where ihe mean coe~~ients are defined as 

II, =.f’A,.,+(l ,f’)A,,, A, =f;4,,t(I-,f’)A,, 

&,?,, -.fLX,,,,,. 1 2 + (I -,/‘fl,lr,,i / ?. I‘,,,, = i4, - ~JfJlif,,,,. 

(13) 

4. RESULTS AND DlSCUSSiQN 

Numoricai calculations wet-c made I‘or lhroc par” 
ameters including the optical diamctcr. 5,). con- 
duction-to-radiatinn parameter. ,%+ and scattering 
&e&I. f:JIl. 

in Figs. ?(a) and (b). the transicnl radial tam- 
peraturc disrributions at mid-ptanc and right end 
boLlnd~~ry arc shown For two oprical diameters. Since 
the medium is exposed to the rarefied cold cnviron- 
ment, the internal energy of ~_lte cy~indr~cai medium is 
rapidly decreasing due to the iradiative heat loss al 
the boundary. As the medium cools down near the 
boundary, the ~~rnpe~~t~~re gradient is created therein. 
As time goes on, the position of the maximum lem- 
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perature gradient migrates into the inner region with 
its value getting smaller, since the conduction plays a 
role inside the medium. This trend can be figured out 
in Fig. 3(a) where the conductive heat flux is plotted 
at various times. At the same time, the medium tem- 
perature becomes uniform as seen for zD = .5 in the 
figure. As the cooling process goes further, the tem- 
perature gradually decreases maintaining its uniform- 
ity. The time interval between the onset of cooling 
and the establishment of the maximum temperature 
gradient is referred to as ‘developing period’ here. In 
this period the radiation is rather dominant over the 
conduction. And due to the radiative loss at the 
boundary, the steep temperature gradient is formed. 
Afterwards, there is also a period during which the 
conduction becomes more dominant than the radi- 
ation. In this interval the temperature distribution 
becomes uniform, for the conduction smoothens out 
the temperature gradient. This interval is named as 
‘relaxing period’ here. This terminology is introduced 
here for simplicity of referring to its physical process. 

Figure 2 also represents the effect of optical diam- 
eter, TV. The smaller zn, the faster the medium cools 
down and the more uniform the temperature dis- 
tribution becomes. As zD gets smaller, the medium is 
well emitting the energy and the radiation can pen- 
etrate farther as shown in Fig. 3(b). Thus it can even 
influence the medium at long-distance and the tem- 
perature distribution is reduced uniform. Due to this 
far-reaching effect of the radiation, the medium can 
cool faster as zu is smaller. 

Figure 4 illustrates a temporal variation of the 
dimensionless mean temperature and the mean emit- 
tance as defined in equations (5) and (6) for various 
values ofz,. As to decreases, the energy contained in 
inner side can be well transferred to the outer cold 
region by radiation. Therefore, the dimensionless 
mean temperature, which implies residual energy in 
the cylindrical medium, is lower for smaller z,, during 
the entire cooling time. The mean emittance for zD = 5 

0.2 

0.12 

% 

0.08 

(ai (b) 

FIG. 3. Transient radial beat flux distribution at middle 
piane: (a) radial conductive heat flux. (b) radial radiative 

heat Rnx. 

0.8 

ti 
a 0.Y 

9 
0.6 

J 

N=l ~~0.0 Ar=i 

t 

FIG, 4. Temporal variation of dimensionless mean tem- 
perature and mean emittance. 

decreases for a while, since the rate of decrease of 
energy loss is smaller than the rate ofdecrease of mean 
tem~rature. Then after reaching its minimum, it 
increases. At this time the rate of decrease of energy 
loss is larger than the rate of decrease of mean tem- 
perature. As zD increases, this trend becomes more 
obvious and the time for minimal mean emittance 
is delayed, because less energy is lost through the 
boundaries, which is so called the heat blockage effect. 
In case for z,, = 2, even the energy kept in inner med- 
ium is easily radiated into the outside and the con- 
duction redistributes energy inside the medium. This 
results in the rate of decrease of energy loss com- 
parable to the rate of decrease of mean temperature. 
Therefore the mean emittance is kept nearly constant 
during the entire cooling period. 

Figure 5 shows the temporal variation of isothermal 
contours for N = 0.01 and 1 .O. Due to its symmetry 
only an upper right-hand half size of cylinder is dis- 
played. It is seen that the region in contact with the 
cold environment starts to cool down. In the develop- 
ing period the isothermal lines are located close to- 
gether, in other words a steep temperature gradient is 
developed. Then, in the relaxing period the gap 
between the isothermal contours increases. This is 
previously explained with unsteady temperature 
gradient. In the case of N = 1 .O (dashed line in Fig. 
5) there are fewer isotbe~al lines compared with 
N = 0.01 (solid line) and the gap between the iso- 
thermal contours is much larger. Physically the con- 
duction plays a more significant role than the 
radiation, as IV increases. So the energy can be more 
efficiently transferred in the medium. In other words 
the radiation results in the heat blockage effect. 

Figure 6(a) shows a temporal variation of total 
radial heat flux at the radial middle plane for N = 0.01 
and 1.0. Initially the tatal radial heat flux is almost 
the same regardless of N. However, as time passes, the 
total radiai heat flux gets larger for larger N because of 
less heat blockage by radiation. A temporal change of 
the radiative heat flux at the ~rcumferential surface 
is illustrated in Fig. 6(b). This flux is the energy lost 
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FIG. 5. Transient isothermal eontours 

t=3.017 

to the cold environment. As cooling progresses, more 

energy is lost for larger N for the same reason as 
aforementioned. But in the relaxing period almost the 

same amount of heat is irradiated at the boundary. 
A transient change of the dimensionless mean tem- 

perature and the mean emittance for various values 
of N is represented in Fig. 7. As N increases, more 
energy is lost, which leads to smaller r,,,. The mean 
emittance for fixed values of rnr (tiO and Ar starts from 

the same initial value because the initial heat fluxes 
are ail identical at the beginning. As N decreases, the 

redistribution of energy by conduction is less effective 
and so both developing and relaxing periods are pro- 
longed. In a limiting case of N = 0, there is no relaxing 

0.0 5=10 f&=0.0 AFI 0.8 

L,=O.242 i 

0.6 0.6 

% 
T% 

0.4 5.4 

0.0 0.0 
0.0 0.25 0.5 0.75 1 .o 

r(at t=0.5) z (at r=O.5) 

(a) (b) 

Frc;. 6. Transient radial heat flux distribution : (a) total heat 
flux at middle plane, (b) total heat flux at circumferential 

surf;aee. 
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0.63 
0.58 
0.53 
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0.43 

period and a similar temperature profile, so-called 

fully developing condition, is obtained as described in 
the introduction. In the other limiting case of N = CC 
the uniform temperature is maintained during the 
whole cooling period, since heat dissipation by con- 

duction is infinitely fast inside the medium. 
In Figs. 8 and 9 the effect of the scattering albedo. 

(I+ on the cooling characteristics is shown for fixed 
N, z,, and Ar. The value of CD<, is changing while !I is 

kept constant. A transient change of temperature and 
radial heat flux along radial direction at the middle 
plane (z = 0.5) is represented in Figs. 8(a) and (b) 
for CII~ = 0.1 and 0.7. If o0 increases, the radiative 
emitting energy is reduced and is isotropically scat- 
tered in all directions with raised strength. Therefore. 
less energy is lost toward the boundary and energy 

1.0 

0.4 t 
i ~~~10 w,=O.O Ar=l I 

I 
;. 

FIG. 7, Temporal variation ol’ dimensionless mean tem- 
perature and mean emittance. 
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FIG. 8. Transient variation of temperature profile and radial 
total heat flux at middle plane : (a) temperature, (b) radial 

total heat flux. 

sharing in the medium is favorable. This makes the 

rate of decrease of both temperature and radial heat 

flux smaller for or, = 0.7 in the figure. 

In Fig. 9 the dimensionless mean temperature and 

the mean emittance are plotted with time for various 
values of wO. By the same reasoning described above, 
the mean temperature T,,, is decreasing slower as o,, 
increases. Consequently less energy is lost to the cold 
environment, which also results in the smaller mean 
emittance for larger w,,. In the case of w0 = 0.95, a 
nearly constant mean emittance is obtained along the 
entire cooling time. Estimated from the curves for the 
mean emittance s,, an initially relatively small amount 
of heat is radiated to the surroundings for the large 

w0. 

5. CONCLUSION 

Using the finite difference technique with the 
Crank-Nicolson scheme to solve the energy con- 
servation equation and applying the discrete ordinates 
method to the radiative transfer equation, the tran- 
sient cooling of a cylindrical hot medium subjected to 

1.0 

3 0.4 
s,=lO N=l Ar=l 

0.0’ “‘111’ ’ 1’1111’ a 4 “1”1’ 
0.01 0.1 1 10 20 

t 
FIG. 9. Temporal variation of dimensionless mean tem- 

perature and mean emittance. 

the rarefied cold environment has been analyzed in 
this work. Its cooling thermal characteristic have been 
investigated for three parameters including the optical 
diameter, zo, conduction-to-radiation parameter, N, 
and scattering albedo w,,. The results obtained are as 
follows : 

(1) As zn decreases, the cooling rate increases and 
the temperature profile tends to be uniform. Sim- 
ultaneously, the developing period is shortened. 

(2) As N decreases, the cooling rate decreases due 
to the heat blockage effect by radiation. 

(3) As w0 increases, the cooling rate also decreases 
since less energy is emitted by the local medium and 
more energy is scattered inside the medium. 
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